
On predicting net-increase followers of an 
WeChat official account 

Bin (Xiaobin) Li | Fall 2019 

Abstract  

In this project, I used online traffic data of an official account on WeChat, one of the 
biggest social media platforms in China, to predict the net-increase of follower count 
so as to have a better understanding of users' behavior. 

Introduction 

I have been running a podcast, YinengFM, since May 2015. The goal of YinengFM is to 
share designers’ stories and celebrate the value of design. We invite professional 
designers, design educators and students as guests on our podcast to share their 
experiences with Chinese-speaking designers globally.   

Each week, 1-2 episodes will be released and posted on the official WeChat account of 
Yineng FM. Over the years, we have collected a lot of data on WeChat. As of now, we 
have more than 26,000 followers, and the number is still growing. To gain a better 
insight into the listeners’ behavior, I planned to analyze the traffic data and predict the 
net-increase of follower count. 

After a lot of research at the beginning, we chose podcasting as the medium to build 
connections with our audience. Chris Evans (2008) [1] has found that "podcasting can 
fill an important needs gap by allowing learners to continue the learning activities when 
it might not normally be possible." Through this effective, convenient and intimate 
medium, our audience could learn about design in a more flexible way. 

On the other hand, WeChat was on the rise and poised to become the biggest social 
media platform in China. Studies have shown that people, especially the younger 
generation, spend more and more time on WeChat. "Almost all of the undergraduate 
students use WeChat every day, 84% of them use it more than half an hour per day," 
Mao (2014) [2] concluded. Since our target audience is college students who are 
interested in design, WeChat is the perfect platform for us to connect with them.  

Data Preparation 

All data used in this project come from WeChat backend. There are 1584 instances in 
the dataset, each of them representing the traffic on that day. Table 1 is the feature list.  

Page  of 1 9



Table 1: Raw data from WeChat 

I prepared the data before I dived into building the model. Here are the changes I 
made:  

1. Changed date to weekdays: We release our episodes every Tuesday, therefore, 
weekday features will be more helpful.  

2. Combine "new_followers" and "unfollowers" to one feature: The number of net-
increase followers is more valuable to us.   

3. Apply min-max normalization to every numeric attribute.  

Table 2 is the new dataset with adjusted feature space.  

Name Type Explanation

Traffic data

total_view_people Numeric
Total number of people who visited our 
account.

total_view_times Numeric
Total number of visitings we get on 
that day

from_official_account_pe
ople

Numeric
People reached our account through 
direct link.

from_official_account_ti
mes

Numeric Traffic coming from direct link

from_post_people Numeric
Number of people access from others’ 
post sharing

from_post_times Numeric Traffic from others’ post sharing

sharing_people Numeric How many people share our posts

sharing_times Numeric
How many times our posts being 
shared on that day

people_save Numeric How many people save our posts

times_saved Numeric How many times our posts being saved

Follower data

new_followers Numeric
How many new followers we got on 
that day

unfollowers Numeric
How many people cancel their 
subscription on that day

Page  of 2 9



Table2: Adjusted dataset 

After preparing the raw data, I split it into three parts, Cross-Validation data(70%), 
Development data(20%), and Test data(10%). The Cross-Validation data was used to 
build models, the Development data to do error analysis to expand feature space, and 
Test Data to test the performance of the final model.  

Name Type Explanation

Traffic data

weekday=Mon Binary

If the instance came from that 
weekday, it would be 1, otherwise it 
would be 0.

weekday=Tue Binary

weekday=Wed Binary

weekday=Thy Binary

weekday=Fri Binary

weekday=Sat Binary

weekday=Sun Binary

total_view_people Numeric
Total number of people who visited our 
account.

total_view_times Numeric
Total number of visitings we get on 
that day

from_official_account_pe
ople

Numeric
People reached our account through 
direct link.

from_official_account_ti
mes

Numeric Traffic coming from direct link

from_post_people Numeric
Number of people access from others’ 
post sharing

from_post_times Numeric Traffic from others’ post sharing

sharing_people Numeric How many people share our posts

sharing_times Numeric
How many times our posts being 
shared on that day

people_save Numeric How many people save our posts

times_saved Numeric How many times our posts being saved

Follower data

net-increase-in-followerrs Numeric New follower - Unfollwers

Page  of 3 9



Baseline Experiment  

I ran the linear regression algorithm with default settings on the dataset to get the 
baseline performance (Table3). 

Table 3: Baseline performance 

Data Exploration — K Means Experiment 

To make more sense of the data, I conducted the K means experiment. First of all, I 
discretized the data by dividing instances evenly into four classes based on the class 
value, "net-increase-in-followers." Each category has the same number of instances. 
From the smallest number to the largest, I labeled them as "very low," "low," 
"medium," and "high." 

I found that weekday was the most critical feature that influenced clustering. For 
example, if an instance came from Wednesday, the model tended to cluster it into the 
"high" class. This may be because we usually release new episodes on Tuesdays, and 
most listeners would tune in the next morning. 

The centroid of these clusters also verified this assumption. For example, the class 
"very high" was assigned to the cluster with a centroid that has "weekday=Wed" 
value. Meanwhile, "very low" was assigned to the cluster with a centroid that has 
"weekday=Friday" value. 

Feature Engineering — Adding Average Feature 

With the discretized dataset, I expanded the feature space by doing an error analysis 
on LightSide.  

First of all, I got my baseline classifier model with SVM on LightSide. Table 4 below 
shows the baseline performance. 

Correlation coefficient 0.2841

Mean absolute error 0.0148

Root mean squared error 0.0376

Relative absolute error 81.0229%

Root relative squared error 95.931%

Page  of 4 9



 
Table 4: SVM baseline performance  

I found no instance predicted as a "Low" class. After going through instances in 
"Medium" and "Low" classes, I realized that they mostly came from Mondays, 
Wednesdays, and Thursdays. However, the average values of all other features in the 
“Low” class are much smaller than those of the “Medium” class. Therefore, I 
speculated that the Weekday features may have confused the model. 

Despite that, other features seemed to be able to differentiate these four classes. For 
one, the average value of most instances in the "Low" class was smaller than that of 
the "Medium" class. To emphasize this difference to the algorithm, I added to the 
dataset a new feature, Average (Table 5), which would contain the average value of all 
the numeric values from attributes. As a result, the model could make more accurate 
predictions by paying less attention to the Weekday features. 

Table 5: New average feature 

The model with new feature space was proven to have significant improvement! (Table 
6) However, it still had trouble predicting instances in the “Low” class. As a result, I 
kept analyzing the “Low” class instances that were predicted as “Medium” class.  

Name Type Explanation

Average Numeric Contains the average value of all numeric 
values of an instance.

Page  of 5 9



 
Table 6: Significant improvement after adding the Average feature.  

Feature Engineering — Features Showing Outside Traffic 

As I continued comparing the incorrectly predicted “Low” class instances to those from 
“Medium” class, I found that the more total traffic there was in a day, the more it 
tended to come from outside the official account (Table 7). Only current followers can 
access to the official account; therefore, this outside traffic may result from being 
visited by those who were following our account. It is safe to conclude that these are 
the people who are interested in us and most likely to become our new followers.  

Page  of 6 9



 

Table 7: The comparison between the incorrectly predicted “Low” class instances to 
those from “Medium” class. The red color indicated the number of outside traffic: the 
deeper the color is, the higher outside traffic is. 

I believe that adding a feature that represents this outside traffic would help the model 
make more accurate predictions. The new feature, total_view-account, contains the 
value calculated by subtracting inside traffic from total traffic (total_view_times - 
from_official_account_times). Following this, I added another feature — total_people-
account, which contains the value calculated by subtracting inside visitors from the 
total number of visitors (total_view_people - from_official_account_people) (Table 8). 

Page  of 7 9



Table 8: New features  

With the new features, there was a significant improvement comparing to the SVM 
baseline model. (Table 9) 

 
Table 9: Comparison between baseline model and the new model with added features 

Tuning 

After feature engineering, I started algorithm tuning. I chose the SVM regression 
algorithm and tuned within the range of 1-3 the exponent setting of the poly kernel 
function. Table 10 shows the performance of the three different models in terms of 

Name Type Explanation

total_view-account Numeric Subtracting inside traffic from total traffic 
(total_view_times - from_official_account_times)

total_people-account Numeric subtracting inside visitors from total number of 
visitors (total_view_people - 
from_official_account_people)

Page  of 8 9



Root_relative_squared_error. As the default setting had the best performance, I chose 
it to run the final model.  

Table 10: Tuning result in terms of Root_relative_squared_error with different 
exponents of the SVM regression model Final evaluation  

Final Evaluation 

Table 11 indicates that the performance of the Testing dataset slightly outperformed 
that of the baseline model.  

Table 11: Performance on testing dataset 

Discussion 

From this project, I have learned how to do error analysis and expand feature space 
step by step. I have also realized that Machine Learning is not a panacea, and only 
good data and meaningful features can lead to good results. Furthermore, knowing 
how big data generates values will benefit my career in the future. 

Reference 

[1] Chris Evans 2008, The effectiveness of m-learning in the form of podcast revision 
lectures in higher education. Computers & Education, 50 (2008), pp. 491-498. https://
doi.org/10.1016/j.compedu.2007.09.016 

[2] Mao, C. 2014,  Friends and Relaxation: Key Factors of Undergraduate Students’ 
WeChat Using, Creative Education, 5, 636-640. http://dx.doi.org/10.4236/
ce.2014.58075 

With exponent=1 
(default)

With exponent=2 With exponent=3

YinengFM_CV_final 77.68 78.48 106.11

Correlation coefficient 0.3009

Mean absolute error 0.0143

Root mean squared error 0.0379

Relative absolute error 78.6965%

Root relative squared error 96.6811%

Page  of 9 9

https://doi.org/10.1016/j.compedu.2007.09.016
https://doi.org/10.1016/j.compedu.2007.09.016
http://dx.doi.org/10.4236/ce.2014.58075
http://dx.doi.org/10.4236/ce.2014.58075

