On predicting net-increase followers of an WeChat official account

Bin (Xiaobin) Li | Fall 2019

Abstract

In this project, I used online traffic data of an official account on WeChat, one of the biggest social media platforms in China, to predict the net-increase of follower count so as to have a better understanding of users' behavior.

Introduction

I have been running a podcast, YinengFM, since May 2015. The goal of YinengFM is to share designers' stories and celebrate the value of design. We invite professional designers, design educators and students as guests on our podcast to share their experiences with Chinese-speaking designers globally.

Each week, 1-2 episodes will be released and posted on the official WeChat account of Yineng FM. Over the years, we have collected a lot of data on WeChat. As of now, we have more than 26,000 followers, and the number is still growing. To gain a better insight into the listeners' behavior, I planned to analyze the traffic data and predict the net-increase of follower count.

After a lot of research at the beginning, we chose podcasting as the medium to build connections with our audience. Chris Evans (2008) [1] has found that "podcasting can fill an important needs gap by allowing learners to continue the learning activities when it might not normally be possible." Through this effective, convenient and intimate medium, our audience could learn about design in a more flexible way.

On the other hand, WeChat was on the rise and poised to become the biggest social media platform in China. Studies have shown that people, especially the younger generation, spend more and more time on WeChat. "Almost all of the undergraduate students use WeChat every day, 84% of them use it more than half an hour per day," Mao (2014) [2] concluded. Since our target audience is college students who are interested in design, WeChat is the perfect platform for us to connect with them.

Data Preparation

All data used in this project come from WeChat backend. There are 1584 instances in the dataset, each of them representing the traffic on that day. Table 1 is the feature list.

Name	Туре	Explanation						
Traffic data								
total_view_people	Numeric	Total number of people who visited our account.						
total_view_times	Numeric	Total number of visitings we get on that day						
from_official_account_pe ople	Numeric	People reached our account through direct link.						
from_official_account_ti mes	Numeric	Traffic coming from direct link						
from_post_people	Numeric	Number of people access from others post sharing						
from_post_times	Numeric	Traffic from others' post sharing						
sharing_people	Numeric	How many people share our posts						
sharing_times Numeric		How many times our posts being shared on that day						
people_save	Numeric	How many people save our posts						
times_saved	Numeric	How many times our posts being saved						
Follower data								
new_followers	Numeric	How many new followers we got on that day						
unfollowers	Numeric	How many people cancel their subscription on that day						

Table 1: Raw data from WeChat

I prepared the data before I dived into building the model. Here are the changes I made:

- 1. Changed date to weekdays: We release our episodes every Tuesday, therefore, weekday features will be more helpful.
- 2. Combine "new_followers" and "unfollowers" to one feature: The number of netincrease followers is more valuable to us.
- 3. Apply min-max normalization to every numeric attribute.

Table 2 is the new dataset with adjusted feature space.

Name	Туре	Explanation				
Traffic data						
weekday=Mon	Binary					
weekday=Tue	Binary					
weekday=Wed	Binary	If the instance came from that				
weekday=Thy	Binary	weekday, it would be 1, otherwise it				
weekday=Fri	Binary	would be 0.				
weekday=Sat	Binary					
weekday=Sun	Binary					
total_view_people	Numeric	Total number of people who visited our account.				
total_view_times	Numeric	Total number of visitings we get on that day				
from_official_account_pe ople	Numeric	People reached our account through direct link.				
from_official_account_ti mes	Numeric	Traffic coming from direct link				
from_post_people	Numeric	Number of people access from others' post sharing				
from_post_times	Numeric	Traffic from others' post sharing				
sharing_people	Numeric	How many people share our posts				
sharing_times	Numeric	How many times our posts being shared on that day				
people_save	Numeric	How many people save our posts				
times_saved	Numeric	How many times our posts being saved				
Follower data						
net-increase-in-followerrs	Numeric	New follower - Unfollwers				

Table2: Adjusted dataset

After preparing the raw data, I split it into three parts, Cross-Validation data(70%), Development data(20%), and Test data(10%). The Cross-Validation data was used to build models, the Development data to do error analysis to expand feature space, and Test Data to test the performance of the final model.

Baseline Experiment

I ran the linear regression algorithm with default settings on the dataset to get the baseline performance (Table3).

Correlation coefficient	0.2841
Mean absolute error	0.0148
Root mean squared error	0.0376
Relative absolute error	81.0229%
Root relative squared error	95.931%
· · ·	

 Table 3: Baseline performance

Data Exploration — K Means Experiment

To make more sense of the data, I conducted the K means experiment. First of all, I discretized the data by dividing instances evenly into four classes based on the class value, "net-increase-in-followers." Each category has the same number of instances. From the smallest number to the largest, I labeled them as "very low," "low," "medium," and "high."

I found that weekday was the most critical feature that influenced clustering. For example, if an instance came from Wednesday, the model tended to cluster it into the "high" class. This may be because we usually release new episodes on Tuesdays, and most listeners would tune in the next morning.

The centroid of these clusters also verified this assumption. For example, the class "very high" was assigned to the cluster with a centroid that has "weekday=Wed" value. Meanwhile, "very low" was assigned to the cluster with a centroid that has "weekday=Friday" value.

Feature Engineering — Adding Average Feature

With the discretized dataset, I expanded the feature space by doing an error analysis on LightSide.

First of all, I got my baseline classifier model with SVM on LightSide. Table 4 below shows the baseline performance.

Baseline Model Metrics:							
Metric	Value						
Accuracy	0.4221						
Карра	0.2076						

Baseline Confusion Matrix:

Act \ Pred	high	low	medium	very low
high	135	1	90	29
low	14	2	117	105
medium	71	5	179	91
very low	12	2	105	153

Table 4: SVM baseline performance

I found no instance predicted as a "Low" class. After going through instances in "Medium" and "Low" classes, I realized that they mostly came from Mondays, Wednesdays, and Thursdays. However, the average values of all other features in the "Low" class are much smaller than those of the "Medium" class. Therefore, I speculated that the Weekday features may have confused the model.

Despite that, other features seemed to be able to differentiate these four classes. For one, the average value of most instances in the "Low" class was smaller than that of the "Medium" class. To emphasize this difference to the algorithm, I added to the dataset a new feature, Average (Table 5), which would contain the average value of all the numeric values from attributes. As a result, the model could make more accurate predictions by paying less attention to the Weekday features.

Name	Туре	Explanation
Average	Numeric	Contains the average value of all numeric values of an instance.

Table 5: New average feature

The model with new feature space was proven to have significant improvement! (Table 6) However, it still had trouble predicting instances in the "Low" class. As a result, I kept analyzing the "Low" class instances that were predicted as "Medium" class.

		Extract Features Re	structure Data Bu	ild Models	Explore Results	Compare Mode	S Predict Labels			
eline Model:					Competing Mod	el:				C
svmbaseline					svmw_aver	age				
AINED_MODEL Documents: YinengFA Feature Plugins: colur Feature Table: baseli Learning Plugin: Sup Validation: CV Tesinod Model.com mparison Plugin: Bi	M_CV_class.csv mns ine port Vector Machines haseline asic Model Comparison				TRAINED_MODEL Document Topological Topological Trained Markets Trained Markets Traine	s: YinengFM_CV_class ugins: columns able: w_average Plugin: Support Vect : CV	s_w_average.csv or Machines			
					0					_
aseline Model Metrics:					Competing Mod	el Metrics:				
Metric		Value			Metric		V	alue		
locuracy		0.4221			Accuracy		0.	4266		
aseline Confusion Matu	iv.				Competing Con	fusion Matrix:				
Act \ Pred hi	ah low	medium	very low	<u> </u>	Act \ Pred	high	low	medium	very low	
igh 13	15 1	90	29		high	138	1	89	27	 _
ow 14	2	117	105		low	14	2	117	105	
nedium 71	5	179	91		medium	72	5	179	90	

Table 6: Significant improvement after adding the Average feature.

Feature Engineering — Features Showing Outside Traffic

As I continued comparing the incorrectly predicted "Low" class instances to those from "Medium" class, I found that the more total traffic there was in a day, the more it tended to come from outside the official account (Table 7). Only current followers can access to the official account; therefore, this outside traffic may result from being visited by those who were following our account. It is safe to conclude that these are the people who are interested in us and most likely to become our new followers.

total_view_times

Total View Times for each Class Prediction broken down by Class. Color shows average of total_view-account_times. The data is filtered on Exclusions (Class, Class Prediction, Sharing Times), which keeps 179 members. The view is filtered on Class and Class Prediction. The Class filter keeps low and medium. The Class Prediction filter keeps medium.

Table 7: The comparison between the incorrectly predicted "Low" class instances to those from "Medium" class. The red color indicated the number of outside traffic: the deeper the color is, the higher outside traffic is.

I believe that adding a feature that represents this outside traffic would help the model make more accurate predictions. The new feature, total_view-account, contains the value calculated by subtracting inside traffic from total traffic (total_view_times - from_official_account_times). Following this, I added another feature — total_people-account, which contains the value calculated by subtracting inside visitors from the total number of visitors (total_view_people - from_official_account_people) (Table 8).

Name	Туре	Explanation
total_view-account	Numeric	Subtracting inside traffic from total traffic (total_view_times - from_official_account_times)
total_people-account	Numeric	subtracting inside visitors from total number of visitors (total_view_people - from_official_account_people)

Table 8: New features

With the new features, there was a significant improvement comparing to the SVM baseline model. (Table 9)

			xtract Features Rest	ructure Data B	uild Models	Explore Results	Compare Model	S Predict Labels			
aseline Model:					_	Competing Mod	lel:				6
svmbaseline				0		svmwith_v	iew_people			\$	
TRAINED_MODEL TRAINED_MODEL Cocuments: YinengFM_CV_class_w_average.csv Documents: YinengFM_CV_class_w_average_sharing_posttime copy_total-account_total_view-account_cosv Feature Flugins: columns Feature Flugins: columns Feature Flugins: columns Feature Flugins: columns Seature Flugins: columns Feature Flugins: columns						int.csv					
omparison Piugi	In: Basic Model Con	iparison				0					
Baseline Model M	Metrics:					Competing Mod	lel Metrics:				
Metric			/alue .4266			Accuracy		V.	alue .441		
Карра		Č	.214			Карра		0.	234		
Act \ Pred high low medium	high 138 14 72	low 1 2 5	medium 89 117 179	very low 27 105 90	•	Act \ Pred high low medium	nusion matrix: high 134 14 68	low 1 3 7	medium 92 115 186	very low 28 106 85	
very low	12	2	103	155		very low	12	3	90	167	
						Significant impro	vement (p=0.024*,	t=-2.267)			
Get Support									C Multithreaded	0.5 GB used	I. 7.9 GB ma:

Table 9: Comparison between baseline model and the new model with added features

Tuning

After feature engineering, I started algorithm tuning. I chose the SVM regression algorithm and tuned within the range of 1-3 the exponent setting of the poly kernel function. Table 10 shows the performance of the three different models in terms of

Root_relative_squared_error. As the default setting had the best performance, I chose it to run the final model.

	With exponent=1 (default)	With exponent=2	With exponent=3
YinengFM_CV_final	77.68	78.48	106.11

Table 10: Tuning result in terms of Root_relative_squared_error with different exponents of the SVM regression model Final evaluation

Final Evaluation

Table 11 indicates that the performance of the Testing dataset slightly outperformed that of the baseline model.

Correlation coefficient	0.3009
Mean absolute error	0.0143
Root mean squared error	0.0379
Relative absolute error	78.6965%
Root relative squared error	96.6811%

Table 11: Performance on testing dataset

Discussion

From this project, I have learned how to do error analysis and expand feature space step by step. I have also realized that Machine Learning is not a panacea, and only good data and meaningful features can lead to good results. Furthermore, knowing how big data generates values will benefit my career in the future.

Reference

[1] Chris Evans 2008, The effectiveness of m-learning in the form of podcast revision lectures in higher education. Computers & Education, 50 (2008), pp. 491-498. https://doi.org/10.1016/j.compedu.2007.09.016

[2] Mao, C. 2014, Friends and Relaxation: Key Factors of Undergraduate Students' WeChat Using, Creative Education, 5, 636-640. http://dx.doi.org/10.4236/ce.2014.58075